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Abstract

A Bayesian model-based clustering method is proposed for clustering objects on the basis
of dissimilarites. This combines two basic ideas. The first is that the objects have latent
positions in a Euclidean space, and that the observed dissimilarities are measurements of
the Euclidean distances with error. The second idea is that the latent positions are gen-
erated from a mixture of multivariate normal distributions, each one corresponding to a
cluster. We estimate the resulting model in a Bayesian way using Markov chain Monte
Carlo. The method carries out multidimensional scaling and model-based clustering simul-
taneously, and yields good object configurations and good clustering results with reasonable
measures of clustering uncertainties. In the examples we studied, the clustering results based
on low-dimensional configurations were almost as good as those based on high-dimensional
ones. Thus the method can be used as a tool for dimension reduction when clustering
high-dimensional objects, which may be useful especially for visual inspection of clusters.

We also propose a Bayesian criterion for choosing the dimension of the object config-
uration and the number of clusters simultaneously. This is easy to compute and works
reasonably well in simulations and real examples.

Key Words: Cluster Analysis, Mixture Model, Markov chain Monte Carlo, Model selec-
tion.
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1 Introduction

Cluster analysis is the automatic grouping of objects into groups on the basis of numerical

data consisting of measures either of properties of the objects, or of the dissimilarities be-

tween them. It was developed initially in the 1950s (e.g. Sneath 1957; Sokal and Michener

1958), and the early development was driven by problems of biological taxonomy and market

segmentation. More recently, clustering has attracted a great deal of attention as a useful

tool for grouping genes and samples in DNA microarray experiments, clustering documents

on the World Wide Web and in other text databases, and grouping pixels in medical images

so as to identify features of clinical interest.

For much of the past half-century, the majority of cluster analysis done in practice have

used heuristic methods based on dissimilarities between objects. These include hierarchical

agglomerative clustering using various between-cluster dissimilarity measures such as small-

est dissimilarity (single link), average dissimilarity (average link) or maximum dissimilarity

(complete link), the k means algorithm (MacQueen 1967), and Self-Organizing Maps (Koho-

nen 2001). These methods are relatively easy to apply and often give good results. However,

they are not based on standard principles of statistical inference, they do not take account

of measurement error in the dissimilarities, they do not provide an assessment of clustering

uncertainties, and they do not provide a statistically based method for choosing the number

of clusters.

Model-based clustering is a framework for putting cluster analysis on a principled sta-

tistical footing; for reviews see McLachlan and Peel (2000) and Fraley and Raftery (2002).

It is based on probability models in which objects are assumed to follow a finite mixture of

probability distributions such that each component distribution represents a cluster. The

model-based approach has several advantages over heuristic clustering methods. First, it

clusters objects and estimates component parameters simultaneously, avoiding well-known

biases that exist when they are done separately. Second, it provides clustering uncertainties

which is important especially for objects close to cluster boundaries. Third, the problems of

determining the number of components and the component probability distributions can be

recast as statistical model selection problems, for which principled solutions exist. Unlike

the previously mentioned heuristic clustering algorithms, however, model-based clustering

requires object coordinates rather than dissimilarities between objects as an input. Thus,

despite the important advantages of model-based clustering, it can be used only when object

coordinates are given, and not when dissimilarities are provided.
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In many practical applications in market research, psychology, sociology, environmental

research, genomics, and information retrieval for the Web and other document databases,

data consist of similarity or dissimilarity measures on each pair of objects (Young, 1987;

Schutze and Silverstein, 1997; Tibshirani et al. 1999; Buttenfield, 2002; Condon et al., 2002;

Courrieu, 2001; Elvevag and Storms, 2002; Priem et al., 2002; Welchew et al., 2002; Ren

and Frymier, 2003). Examples of such data include the co-purchase of items in a market,

disagreements between votes made by pairs of politicians, the execution of links between

pairs of web pages, the existence or intensity of social relationships between pairs of families,

and the overlap of university applications by high school graduates.

Even when object coordinates are given, visual display of clusters in low dimensional

space is often desired since it may provide useful information about the relationships be-

tween the clusters and the underlying data generation process (Hedenfalk et al, 2002; Yin,

2002; Nikkila, 2002). One way to reduce the dimensionality of objects for visual display

in lower dimensional space is multidimensional scaling (MDS). In MDS, objects are placed

in a Euclidean space while preserving the distance between objects in the space as well as

possible.

There are many MDS techniques in the literature. Recently Oh and Raftery (2001)

proposed a Bayesian MDS (BMDS) method using Markov chain Monte Carlo. This provided

good estimates of the object configuration in the cases studied, as well as a Bayesian criterion

for choosing the object dimension. However, they did not consider clustering and hence

clustering has to be done separately with the estimated object configuration from MDS.

In this paper, we develop a model-based clustering method for dissimilarity data. We

assume that an observed dissimilarity measure is equal to the Euclidean distance between the

objects plus a normal measurement error. We model the unobserved object configuration as

a realization of a mixture of multivariate normal distributions, each one of which corresponds

to a different cluster. We carry out Bayesian inference for the resulting hierarchical model

using Markov chain Monte Carlo (MCMC). The resulting method combines MDS and model-

based clustering in a coherent framework.

There are three sources of uncertainty in model-based clustering with dissimilarites: (a)

measurement errors in the dissimilarities; (b) error in estimating the object configuration;

and (c) clustering uncertainty. Heuristic clustering methods that cluster directly from dis-

similarities, such as hierarchical agglomerative clustering and self-organizing maps, do not

take account of sources (a) and (c), while source (b) does not arise there. As an alternative,

one may consider a two-stage procedure which estimates the object configuration in the first
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stage, using a heuristic MDS method or BMDS, and carries out model-based clustering in

the second stage. Sequential application of heuristic MDS and model-based clustering takes

account of source (c) but not of sources (a) and (b). Sequential application of Bayesian

MDS and model-based clustering considers sources (a) and (c), but separately rather than

together; it does not consider source (b). In contrast, our approach accounts for all three

sources of uncertainty simultaneously. Simultaneous estimation of the errors is important,

because errors in the dissimilarity measures and/or the estimated configuration can affect

the clustering and the clustering uncertainties, as we will show by example.

Other important issues are the choice of the number of clusters and of the dimension of

the objects. Oh and Raftery (2001) proposed an easily computed Bayesian criterion called

MDSIC for choosing object dimension. We extend this to determine the number of clusters

as well. The resulting criterion can be computed easily from MCMC output.

Section 2 describes our model for dissimilarities, the mixture model for the object config-

uration, and the prior distributions we use. Section 3 describes Bayesian estimation for this

model using MCMC. The Bayesian criterion for choosing the dimension and the number of

clusters is given in Section 4, while the method is applied to several simulated and real data

sets in Section 5. A summary and discussions are given in Section 6.

2 Model for Clustering with Dissimilarities

Let δij denote the dissimilarity measure between objects i and j, which is assumed to be

functionally related to p unobserved attributes of the objects. Let xi = (xi1, ..., xip) denote

an unobserved vector representing the values of the attributes possessed by object i.

As in Oh and Raftery (2001), we model the true dissimilarity measure δij as the distance

between objects i and j in a Euclidean space, i.e., δij =
√

∑p
k=1(xik − xjk)2. In practical

situations, the true dissimilarity measure can be different from Euclidean distance and there

can be measurement error in observations. We therefore assume that the observed dissim-

ilarity measure, dij, is equal to the true measure, δij, plus a Gaussian error. In addition,

since dissimilarity measures are typically given as positive values we restrict the observed

dissimilarity to be positive. Thus, given the Euclidean distance δij, the observed dissimilarity

measure dij is assumed to follow the truncated normal distribution

dij ∼ N(δij , σ
2) I(dij > 0), i 6= j, i, j = 1, ..., n. (1)

Note that dij is related to X = {xi}, called the object configuration, only through δij. To

represent clustering, we assume that the object configuration is a sample from a mixture of
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multivariate normal distributions,

xi ∼
G
∑

j=1

εj N(µj, Tj), (2)

where each component normal distribution represents a cluster.

We use the following priors for the model parameters:

σ2 ∼ IG(a, b),

(ε1, . . . εg) ∼ Dirichlet(1, ..., 1),

µj ∼ N(µj0, Tj),

Tj ∼ IW (α, Bj), (3)

where IG(a, b) is the inverse Gamma distribution with mode b/(a+1) and IW is the inverse

Wishart distribution.

One may use a more parsimonious covariance structure for Tj than the above uncon-

strained one. For instance, one may restrict Tj to be a diagonal matrix, or let T1 = · · · = TG,

or use some other parsimonious covariance model such as those commonly used in model-

based clustering (Banfield and Raftery 1993; Fraley and Raftery 2002). In that case, the

priors need to be modified accordingly.

3 Posterior Inference

3.1 Markov chain Monte Carlo

It is well known that inference for mixture models can be simplified with latent variables

which indicate the group memberships of objects. We define latent variables Ki such that

P (Ki = j) = εj and xi belongs to class j if Ki = j, so that

xi|Ki = j ∼ N(µj, Tj).

From the prior and the model, the full conditional posterior distributions (densities) given

all the other unknowns are given as

π(xi|Ki = j, others ) ∝ exp[−1/2(xi − µj)
′T−1

j (xi − µj) (4)

−
1

σ2

n
∑

j 6=i,j=1

(δij − dij)
2]

n
∏

j 6=i,j=1

Φ(δij/σ) (5)
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π(σ2| others ) ∝ (σ2)−(m/2+a+1) exp



−
1

σ2
(SSR/2 + b) −

∑

i>j

log Φ

(

δij

σ

)





(ε1, .., εg|others) ∼ Dirichlet(n1 + 1, ..., ng + 1), (6)

(µj| others) ∼ N(
njx̄j + µj0

nj + 1
,

Tj

nj + 1
), (7)

(Tj| others) ∼ IW (α + nj/2, Bj + Sj/2), (8)

P (Ki = j| others) = εjφ(xi; µj, Tj)/
g
∑

k=1

εkφ(xi; µk, Tk), (9)

where φ and Φ are respectively pdf and cdf of the standard normal distribution, SSR =
∑n

i=1

∑i−1
j=1(δij − dij)

2,

nj =
j
∑

i=1

I(Ki = j), (10)

Sj =
n
∑

i=1

(xi − µj)(xi − µj)
′I(Ki = j), (11)

and I is the indicator function.

Iterative generation of the unknown parameters from their full conditional distributions

for a sufficiently long time yields samples of the parameters from the joint posterior distribu-

tion, and posterior inference can be done by using the samples. When a simpler covariance

structure is used for Tj with appropriate priors, the algorithm can be easily modified since

only the generation of Tj needs to be changed.

Generation of samples from the full conditional distributions of the parameters {εj, µj, Tj}

is straightforward since the full conditional posterior distributions all have convenient forms.

However, the full conditional posterior distributions of xi and σ2 do not have closed forms,

and so we apply the Metropolis-Hastings algorithm (Hastings, 1970) to generate samples

of xi and σ2. Oh and Raftery (2001) suggested an easy random walk Metropolis-Hastings

algorithm for generating samples of xi and σ2 when G=1. Given the latent indicator variable

Ki, xi follows a one-component multivariate normal distribution. Thus, we can easily modify

the algorithm of Oh and Raftery (2001) for generating xi from its full conditional posterior

distribution in the mixture model. Given X, the distribution of σ2 does not depend on the

mixture model parameters, so that the generation of σ2 is the same in the mixture model as

in the one-component model.

To initialize the MCMC algorithm, we first run Oh and Raftery’s (2001) BMDS as a

preliminary run to obtain an initial guess for X, and then run MCLUST with this initial

guess.
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3.2 Non-Identifiability

Euclidean distance is invariant under translation, rotation, and reflection of objects. Thus,

the dissimilarity data provide information only about the relative locations of X. In a

Bayesian context, X is identified, strictly speaking, but the absolute location and orientation

of X are defined only by the prior distribution, and in practice are very weakly identified.

As a result, the relative positions of the xi may have a tight posterior distribution, but their

absolute positions will typically have a dispersed posterior distribution.

To get around this problem of weak identification, we use a Procrustean similarity trans-

formation (Borg and Groenen 1998, Ch.12) which proceeds as follows: (i) Obtain an estimate,

X∗, of X from a preliminary run, for example the MLE or the posterior mode. (ii) Trans-

form the sample of X at each iteration of MCMC so that coordinates of X are as close as

possible to the corresponding coordinates of X∗, where the transformation is restricted to be

a composition of some or all of a translation, a rotation, and a reflection. See the Appendix

for more details. Since the transformation does not change the Euclidean distances between

pairs of xi’s, it does not change the likelihood but it approximately fixes the location and

orientation of samples of X so that X itself can be stably estimated.

There is another non-identifiability problem. A mixture of density functions is invariant

under arbitrary permutation of component labels. Thus, the posterior density function would

be invariant under arbitrary permutation of component labels unless strong prior information

is used (Stephens 2000). This may cause label switching during the MCMC iterations, hence

typical averages of MCMC samples of the parameters may yield unreasonable estimates of

the mixture parameters. To avoid this problem, we adopt the relabeling procedure suggested

by Celeux et al. (2000) at each iteration of MCMC. See the Appendix for details.

By using the two postprocessing steps, Procrustean transformation and relabelling, we

obtain stable samples of the unknown parameters from which posterior estimates can be

computed.

4 A Bayesian Selection Criterion for Configuration of

Dimension and the Number of Clusters

Posterior inference as described in the previous section presumed that the dimension, p,

of the object configuration, and the number of clusters, G, are given. These are typically

unknown, however, and we now propose a statistical method for choosing p and G. Oh
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and Raftery (2001) suggested a dimension selection criterion for MDS, called MDSIC, which

works well with Euclidean distance measures with small or moderate error size. In this

section, we extend MDSIC and propose a new Bayesian selection criterion, named MIC, for

choosing both p and G simultaneously.

We view the overall goal of our analysis as being to choose the best object configuration

across the dimension p and the number of clusters G. We therefore base our model selection

criteria on π(XpG, p, G|D), the posterior density function of X, p, G, given data D at X =

XpG, where XpG is the best object configuration given p and G.

Note that

π(XpG, p, G|D) = c · f(D|XpG, p, G)π(XpG, p, G),

where c is a constant, f(D|XpG, p, G) =
∫

f(D|XpG, p, G, σ2)π(σ2)dσ2 and π(XpG, p, G) =
∫

π(XpG, p, G, Λ)dΛ are the marginal likelihood and the marginal prior of (XpG, p, G), re-

spectively. Here we use f(D| · · ·) to denote the sampling density of data D given specified

parameter values and Λ to denote the mixture model parameters (ε, µ, T ). As p or G in-

creases, the likelihood increases and it can be considered as a measure of fit. However, as

p or G increases, the prior density decreases and it can be viewed as a penalty for more

complex models.

Under equal prior probabilities for all p in pmin ≤ p ≤ pmax and for all G in Gmin ≤ G ≤

Gmax,

π(XpG, p, G|D) ∝ f(D|XpG, p, G)π(XpG|p, G).

Thus one only needs to compute the marginal likelihood and the marginal prior of X for

each p and G. Let π(XpG|D) = π(XpG, p, G|D), f(D|XpG) = f(D|XpG, p, G), and π(XpG) =

π(XpG|p, G) for notational simplicity. Oh and Raftery (2001) showed that f(D|XpG) is

approximately proportional to SSR
−m/2+1
pG , where SSRpG =

∑

i>j(δ
(pG)
ij − dij)

2 and δ
(pG)
ij is

the Euclidean distance between the xi and xj of XpG.

Now consider computation of π(XpG). When G = 1, with T = diag(t1, · · · , tp) and

independent IG(α, βj) priors for tj, j = 1, ..., p,

π(Xp1) = (2π)−np/2(Γ(α + n/2)/Γ(α))p
p
∏

j=1

βα
j (βj + sj/2)−(α+n/2), (12)

where sj is the j-th diagonal component of nSx =
∑

(xi− x̄)(xi− x̄)′ (Oh and Raftery 2001).

When G ≥ 2, the prior π(XpG) is not given in a closed form and needs to be estimated.

From the relationship

π(XpG) =
π(XpG|Λ

∗)π(Λ∗)

π(Λ∗|XpG)
(13)

7



for a fixed value Λ∗ of Λ, π(XpG) can be estimated from estimate of π(Λ∗|XpG). From Oh

(1999) it can be shown that

π(Λ∗|XpG) = E[π(ε∗|K, G)
G
∏

j=1

π(µ∗
j |K, T ∗

j ,XpG)π(T ∗
j |K, µj,XpG)], (14)

where the expectation is with respect to the joint distribution of (K, ε, µ, T ) given (XpG, p, G).

Since the conditional distributions of ε, µj, Tj are given in closed forms, π(Λ∗|XpG) can be

easily estimated by using samples of (K, ε, µ, T ) generated from MCMC algorithm. In theory

any value of Λ∗ can be used but in practice Λ∗ close to the mode of Λ seems to work well for

efficiency point of view.

However, simple comparison of the posterior of XpG can lead to the choice of large p

because of the shrinking effect. As described in Oh and Raftery (2001) there is a shrinking

effect as the dimension p increases, i.e., the scale (dispersion) of X tends to decrease as p

increases without altering the fit. This would yield larger π(XpG) for larger p even when

the likelihoods are the same and hence would favor larger p. To avoid this shrinking effect,

Oh and Raftery (2001) have suggested comparing configurations in the same dimensional

space. Specifically, they compare dimensions p and p − 1 through Xp and X∗
p = (Xp−1 : 0),

a n × p matrix with the p − 1 columns equals to Xp−1 and the last column has all elements

equal to 0. Note that X∗
p yields the same likelihood as Xp−1 and it may be considered as an

implantation of Xp−1 in p-dimensional space.

When G = 1, let Xp = Xp1. Since f(D|X∗
p) = f(D|Xp−1),

π(Xp|D)

π(X∗
p|D)

=
f(D|Xp)π(Xp)

f(D|X∗
p)π(X∗

p)

= [
f(D|Xp)

f(D|Xp−1)

π(Xp)

π(Xp−1)
][
π(Xp−1)

π(X∗
p)

]

= [
π(Xp|D)

π(Xp−1|D)
][
π(Xp−1)

π(X∗
p)

].

Thus, Ap = π(Xp−1)/π(X∗
p) is a correction factor to the posterior density ratio of Xp and

Xp−1 for the shrinking effect. With α = 1/2 and βj = s
(p)
j /2n, an approximate unit infor-

mation prior, for tj, Ap is given as

−2 log Ap = −2 log
π(Xp−1)

π(X∗
p)

= Hn − n log(
s(p)

p

n
) +

p−1
∑

j=1

log(r
(p)
j ) + (n + 1)

log((n + 1)

(n + r
(p)
j )

),

where r
(p)
j = s

(p)
j /s

(p−1)
j and Hn = −(n +1) log(π) + 2 log(Γ((n+ 1)/2)). The shrinking effect

is related only to p and not to G, so we use Ap for all values of G given the same p.
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Now we propose a selection criterion, which we call MIC, as follows. Let

MIC1G = (m − 2) log SSR1G − 2 log π(X1G)

MICpG =
p
∑

q=1

−2 log
π(XqG|D)

π(X∗
qG|D)

(15)

=
p
∑

q=1

−2 log
f(D|XqG)

f(D|Xq−1,G)

π(XqG)

π(Xq−1,G)
− 2 log Aq (16)

= (m − 2) log(SSRpG) − 2 log π(XpG) − 2
p
∑

q=1

log Aq. (17)

Note that (m − 2) log(SSRpG) can be considered as a measure of fit, −2 log π(XpG) plays

the role of a penalty for complexity, and −2
∑p

q=1 log Aq is a cumulative correction factor for

the shrinking effect. The values of p and G that yield the minimum of MICpG are viewed

as best.

5 Examples

We apply the proposed method, which we call BMCD, and the model selection criterion

MIC, to some simulated and real data sets.

In the simulation and Bank examples given in Sections 5.1 and 5.2, we use a general

covariance structure for Tj, and for the Leukemia and Yeast examples in Sections 5.3 and 5.4

we use the same covariance structure for Tj, i.e., T1 = T2 = · · · = TG. In all the examples,

we use x̄ as the prior mean of µj and we let α = p + 4 and Bj = (α − p − 1)Sx for the

hyper-parameters of the Inverted Wishart prior of Tj in (3), where x̄ and Sx are the average

and sample covariance matrix of the initial xi’s. Thus, we use a common mean for all µj and

a common vague prior for all Tj, and choose the scale parameter of the Inverted Wishart

distribution so that the prior mean of Tj is equal to Sx.

5.1 Simulation Examples

Six data sets with 50 objects each were generated from mixtures of bivariate normal distribu-

tions with various values of the mixture model parameters. Scatterplots of the true objects

from the six data sets are given in Figure 1. In all cases the true dimension is p = 2 but the

true numbers of clusters are different. The first set has two well-separated clusters and the

second set has three well-separated clusters. The third set has two big clusters and a small

cluster which may be considered as a group of outliers. The fourth set has two clusters with
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Figure 1: Scatterplots of true objects in the simulation data. There are two well-separated
clusters in (a), three well-separated clusters in (b), two big clusters and a small cluster of
outliers in (c), two clusters with different covariance structures in (d),two big clusters and
two small clusters in a symmetric position in (e), and two close clusters in (f).
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Figure 2: Plots of MIC for p = 2 in the six simulation data sets. In all cases MIC chooses
the correct number of clusters.
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Figure 3: Scatterplots of the estimated object configuration and the classification from
BMCD with the optimal p and G in the six simulation data sets. Different symbols represent
different clusters.
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different covariance structures. The fifth set has two big clusters and two small clusters that

are symmetrically located. The last set has two close clusters. For each data set, Euclidean

distances δij between pairs of objects were computed and a 50 × 50 matrix of observed dis-

similarity measures dij was obtained by generating the dij from a normal distribution with

mean δij and standard deviation 0.3, restricted to be positive.

For each data set, we applied BMCD with 20,000 MCMC iterations, of which 5,000 were

discarded for burn-in, and we computed MIC for various values of p and G. In all cases, the

MIC values for p other than 2 were much larger than the MIC value for p = 2 for every value

of G considered, so MIC correctly identifed the true dimension p = 2. Figure 2 presents

plots of MIC for various G when p = 2 for the six data sets. In all cases, MIC selected the

correct number of clusters, though MIC’s preference for the selected G was not as strong as

for p. Also, the estimated object configurations from BMCD were good, as can be seen in

Figure 3.

5.2 Lloyds Bank Data

We now consider dissimilarity measures between the careers of 80 employees of Lloyds Bank

in England during the period 1905–1950 (Stovel et al. 1996), computed using the optimal

alignment method of Sankoff and Kruskal (1983), as applied to career data by Abbott and

Hrycak (1990). Note that the dissimilarity measures in this data set are not Euclidean

distances and may not satisfy some properties of typical metric distances. Oh and Raftery

(2001) analyzed the data and MIC chose p = 8 as the optimal dimension. After removing

two outlying employees who had extremely short careers at the bank, MCLUST was applied

to the estimate of X from BMDS. It chose G = 3 and yielded a reasonable classification of

objects. The first group consisted of 16 employees who had short careers at the bank and

spent all or most of their careers at the lowest clerk rank, and the second group consisted of

30 employees who had long careers at the bank and spent all or most of their careers at the

lowest clerk rank. The third group consisted of 32 employees, 24 of whom were promoted to

managers and 8 of whom had medium length careers and ended at the clerk level.

We applied BMCD to the data with 40,000 MCMC iterations, of which the first 10,000

were discarded as burn-in. MIC chose p = 8 and G = 4, which coincides with the results

from the previous analysis. The first group was identical to the first group found in the

previous analysis. The second and the third groups were almost identical to those found in

the previous study except that the 8 employees who had medium length careers and ended

at the clerk level were clustered together with those who had long careers and ended at the
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Figure 4: Scatterplots of the estimated object configuration and the component density
functions from BMCD for the Lloyds Bank data.
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clerk level in BMCD, rather than with the managers. This is more satisfactory, substantively.

The fourth group consisted of the two outliers which were removed before clustering in the

previous analysis. Thus, BMCD picked up the outliers during the process and yielded a

more sensible clustering than the previous analysis. Figure 4 shows pairwise scatter plots of

object configurations and the estimated component densities for the first four coordinates.

Note that in Figure 4, the component density for the outliers has mean close to zero and a

large covariance since there are only two objects in the group and the effect of the prior is

dominant for this component. From Figure 4, it seems that BMCD gives clear separation

between clusters and takes care of the outliers.

5.3 Leukemia Data

Golub et al. (1999) used gene expression data on 50 genes and 72 acute leukemia patients to

classify the patients into different types of leukemia. The 50 genes are believed to be informa-

tive about the distinction between acute myeloid leukema (AML) and acute lymphoblastic

leukemia (ALL) in the known samples.

We follow the standardization process given by Getz et al. (2000) and compute the

Euclidean distance between genes, yielding a dissimilarity matrix similar to a correlation

matrix. Due to the standardization, the mean of each gene is set to zero and this reduces

the true dimension of the objects from 50 to 49.

Investigation of plots of dissimilarity measures between pairs of individuals shows that

there are two big groups and most dissimilarity measures between individuals in the same

group are small while those between individuals in different groups are large. Figure 5 (a) and

(b) are typical plots for individuals in the first and the second groups, respectively. However,

there are some individuals, such as numbers 12 and 55, who seem to be misclassified since

they have smaller dissimilarities with those in the different group and larger dissimilarities

with those in the same group as shown in Figure 5 (c)-(d). Also there are a few individuals

whose distances do not clearly show their closeness to either group as shown in Figure 5

(e)-(h).

In all the examples we analyzed, MIC showed a sharp drop at the same optimal value of

p for all values of G, so that the choice of G does not affect the choice of dimension. This

is because the object configurations are not much different for different Gs when the same p

is used. Thus, one may choose optimal dimension p with G = 1 and then choose optimal G

with the selected p. In other words, one may apply BMDS to choose the dimension and then

apply BMCD with the optimal dimension. This would reduce computation time significantly.
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Figure 5: Distances for some selected individuals in the Leukemia data (the id numbers
and the type of Leukemia are given at the bottom of each figure). Typical distances for
individuals in AML and ALL groups are shown in (a) and (b), respectively. Figures (c)-
(d) presents distances for individuals who have smaller distances with those in the different
group and larger distances with those in the same group. Figures (e)-(h) presents distances
for individuals whose distances do not clearly show their closeness to either group.
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Figure 6: MICs for Leukemia data with G = 1.

Note that although p and G are chosen sequentially, the estimation of object configuraton

and clustering are still done simultaneously.

Following the above suggestion, BMDS (i.e. BMCD with G = 1) was applied to the data

and MDSIC clearly chose p = 49, which is the true dimension, as shown in Figure 6. We

used 18,000 MCMC iterations, of which 3,000 were discarded as burn-in.

We next applied the method with p = 49 for various values of G and MIC values are

presented in Table 1. MIC clearly chooses G = 2, which is the correct number of groups for

this dataset. Three individuals, numbers 12, 55 and 69, are misclassified, so the misclassifi-

cation rate is 4.2%. The 41st individual is classified into the correct AML group, but his or

her posterior membership probability for AML is only 0.51, showing large uncertainty. This

result makes sense in light of the dissimilarity measures in Figure 5.

For visual display of the clusters and objects in low dimensional space, we applied the

method with p = 2, 3 for various values of G and the results are presented in Table 1.

MIC chooses G = 2 groups both when p = 2 and when p = 3. Classification results

from p = 2, 3 are the same as those from p = 49 with G = 2 except for the 41st and

the 69th individuals. When p = 2 and 3, the 41st individual is misclassified into the ALL

group but with membership probability of only 0.51, and the 69th individual is correctly

classified into the AML group when p = 2, 3. However, the membership probability for the

69th individual is about 0.56 when p = 2, 3 while it is close to 1.0 when p = 49, showing

significant uncertainty when p = 2, 3. Thus, in terms of clustering, 2 or 3 dimensions from

BMCD does as well as the true 49 dimensions for all the individuals except for the 69th.

Figure 7 shows estimated object configurations with their classifications when p = 3 and

G = 2. It is interesting to observe that clusters can be very well identified in the plot of the
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Table 1: MIC values for Leukemia data for p = 2, 3, 49

G 1 2 3 4
p = 2 MIC 14444 14425 14428 14440
p = 3 MIC 12986 12970 12973 12979
p = 49 MIC -11058 -22457 -22432 -22320

first two coordinates from BMCD. And it is hard to see clusters in the plots of the other

coordinates. We have observed this in most of data sets we analyzed, so in some cases only a

few coordinates from BMCD would do as well as all the coordinates, in terms of clustering.

To assess the benefits from simultaneous rather than separate estimation of object con-

figuration and clustering, we compared BMCD with a two-stage scheme, which estimates

object configuration and then applies model-based clustering, when p = 3 and G = 2. For

a fair comparison, we used the same priors, and we applied the same MCMC procedures

for posterior estimation of the parameters and use the estimated object configuration from

BMCD as input data in the model-based clustering of the two-stage scheme. Note that

the only difference between the two methods lies in the randomness of object configuration.

In most cases the estimated membership probabilities were more extreme in the two-stage

method. This may be because it is more likely to assign each object to a certain group

when X is fixed than when it is random. More extreme probabilities yield smaller posterior

standard deviations for the probabilities, suggesting that sequential application of MDS and

model-based clustering can underestimate the clustering uncertainties.

5.4 Yeast Cell Cycle Data

The Yeast cell cycle data (Cho et al. 1998) consist of gene expression levels of approximately

6000 genes over 17 time points. Yeung et al. (2001) used a subset of this data consisting of

384 genes whose expression levels peak at different time points corresponding to five known

phases of the cell cycle (Cho et al. 1998).

We normalized the data analyzed by Yeung et al. (2001) using a typical standardization

method, subtracting the mean and dividing by the standard deviation, for each gene. We

then computed Euclidean distance for each pair of genes and used the Euclidean distances

as dissimilarity measures. Due to the normalization, we lose one dimension and hence the

true dimension of object configuration from the dissimilarity matrix is 16.

Yeung et al. (2001) applied the MCLUST model-based clustering software (Fraley and
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Figure 7: Three-dimensional and pairwise scatter plots for the object configuration and
their classification from BMCD for Leukemia data. The sizes of membership probabilities
are represented by the darkness of symbols, (black for probability 1 and gray for probability
0.5). Misclassified objects are marked by circles.
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Table 2: MIC values for Yeast data for p = 2, 3, 16.

G 3 4 5 6 7 8
p = 2 MIC 844334 844232 844207 844185 844173 844201
p = 3 MIC 772569 772459 772402 772423 772407 772396
p = 16 MIC -1346244 -1346602 -1346788 -1346521 -1347010 -1346648

Raftery 1999) to the 384 × 17 dataset and showed that the “EEE” model, which assumes

that the mixture components have the same covariance matrix, gives a better fit than other

models, so we made this assumption in applying BMCD to this data set. We used 18,000

MCMC iterations, of which we discarded 3,000 as burn-in.

First, to choose the optimal dimension of objects, BMDS was applied for p = 1 to 18.

It indicated clear evidence for p = 16 which is the correct dimension in this example. Next

BMCD was applied with p = 16 for G = 3 to 8. Values of MIC are given in Table 2. MIC

reaches a minimum at G = 7 but has a first local minimum at G = 5, and here we consider

G = 5 and G = 7 as possible optimal numbers of groups.

We applied BMCD with p = 2, 3 for visualization and parsimony. Values of MIC are given

in Table 2. When p = 2, MIC chooses G = 7 and when p = 3 it chooses G = 8, but MIC

has about the same value at G = 5 and G = 7. Figure 8(a) presents the two-dimensional

object configuration from BMCD with the actual five known phases. There are significant

overlaps between the actual clusters. Figure 8(b) shows the estimated object configuraton

and classification results from BMCD with p = 2 and G = 5. It can be seen that BMCD

yields a reasonable clustering of the objects.

We compared the clustering results for p = 2, p = 3, and p = 16, when G = 5. There are

20 mismatches between p = 2 and p = 16, and 22 mismatches between p = 3 and p = 16.

Thus, the proportion of mismatches is less than 6% between the low dimensional clustering

and the clustering with the true dimension. Many of the mismatched genes show significant

clustering uncertainties in low dimensions, suggesting that the assessment of uncertainty is

accurate in these cases. We next computed the proportion of mismatches between clustering

from BMCD and the actual five clusters. These are 0.268, 0.266 and 0.279 for p = 16, p = 3,

and p = 2, respectively, indicating that there is almost no difference in clustering quality

between the different dimensions.

As for the Leukemia data, we performed the two-stage scheme of MDS plus model-based

clustering with p = 2 and G = 5, and compared its membership probabilities with those
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from BMCD. The main conceptual difference between the two methods lies in whether X

is fixed or randomly generated at each MCMC iteration. In almost all cases the two-stage

scheme provides more extreme membership probabilities, resulting in a smaller posterior

standard deviation. This again suggests that first estimating object configuration and then

clustering (as opposed to doing both simultaneously as in BMCD) does not take into account

the variation in object configuration when clustering and that it may underestimate the

clustering uncertainties.

6 Discussion

We have proposed a model-based clustering method for the situation where the data consist

of dissimilarity measures between pairs of objects. It is also useful for clustering objects in

low dimensional space for visual display and parsimony even when the object coordinates

are given, but are high-dimensional.

Hierarchical models are used to represent the possible sources of error, namely measure-

ment errors in the dissimilarities, errors in estimating object configuration, and errors in

clustering the objects. A probabilistic model is used for the observed dissimilarities and a

mixture model is used for the unobserved latent object configuration. The object configu-

ration, the mixture model parameters, and the objects’ group memberships are estimated

simultaneously via Bayesian inference using MCMC. The object configuration can be used

for display of objects and the mixture parameters can be used for clustering objects. Thus,

the method performs MDS and model-based clustering simultaneously, taking account of the

errors simultaneously rather than sequentially and hence yielding a reasonable measure of

clustering uncertainty.

In contrast, other methods of clustering from dissimilarity measures either do not incorpo-

rate all the errors or do not take them into account simultaneously. In Table 3 we summarize

some possible alternative types of technique for clustering using dissimilarity data. The first

consists of heuristic clustering methods which can cluster directly from dissimilarities, such

as hierarchical agglomerative clustering, k means, and self-organizing maps. The second

scheme is a sequential application of a typical MDS, which gives object configuration with-

out estimation error, and model-based clustering, which provides clustering uncertainty. The

third scheme is a sequential application of BMDS, which provides object configuration as

well as estimation error, and model-based clustering.

When the estimated dimension is high, we have compared BMDS with the selected di-
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Figure 8: Scatterplots of object configuration from BMCD with p = 2 in Yeast data and
their classifications: (a) presents the actual five clusters and (b) presents the classification
from BMCD with G = 5.
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Table 3: Three Sources of Errors in Clustering with Dissimilarities

Heuristic
Error Sources clustering MDS+ MBC BMDS + MBC BMCD
Dissimilarity no no yes yes

Object configuration not applicable no yes yes
Clustering no yes yes yes

Simultaneous consideration no no no yes

mension with BMDS with low dimension (2 or 3). We found that the clustering results were

very similar, and that those misclassified in the low-dimensional analysis had high cluster-

ing uncertainties, which is good. Thus, in practice BMDS low dimensional configurations

may be good enough for many purposes, especially if it is followed up with more intensive

investigation of objects with high clustering uncertainty.

We have proposed a Bayesian criterion, MIC, for simultaneously selecting the object

dimension and the number of clusters, which is easy to compute from MCMC output. In

our simulations and in real examples, it worked reasonably well in all cases. MIC varied

more between dimensions than between numbers of clusters, and the choice of dimension

was not affected by the choice of the number of clusters. Thus, as an approximation we

suggest selecting the dimension assuming one cluster (i.e. using BMDS), and then choosing

the number of clusters given the selected dimension. This greatly reduces computation time.

One important area where data come in the form of measures on pairs of objects is social

networks, where data consist of the presence or absence (or in some cases the intensity)

of ties between actors. Hoff, Raftery and Handcock (2002) used ideas similar to those of

Oh and Raftery (2001) to represent actors in a social network by positions in a Euclidean

latent space and estimate the positions. The model used was the same as that of Oh and

Raftery (2001), except that the conditional distribution of “dissimilarities” (in the social

network case, presence or absence of ties) given distances was taken to be binary with a

conditional probability specified by logistic regression, rather than truncated normal. The

analysis of social network data is often motivated by questions about the presence and

nature of clusters in the network, and these are often answered fairly heuristically. It would

seem straightforward to extend the present approach to social network data, again modeling

presence or absence of ties as conditionally binary with a probability depending on distance

in a logistic regression manner. This could provide a more formal way of answering questions
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about clustering in social networks.
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APPENDIX

A. Procrustean transformation

• Step 0: Let J be the centering matrix, i.e., J = I − 1/n11′, where I is the identity
matrix and 1 is the vector of all 1’s.

• Step 1: Compute C = X∗′JX.

• Step 2: Compute the singular value decomposition of C, i.e., C = PDQ′, where P and
Q are orthogonal matrices and D is a diagonal matrix.

• Step 3: Let T = QP ′.

• Step 4: Let t = 1/n(X∗ − XT)′1.

• Step 5: Transform X by X = XT + 1t′.

B. Relabeling Procedure

Let θ be a d dimensional vector of all the parameters in the mixture distribution, and J
be the number of components in the mixture.

• Step 0. Estimate elements of θ and their variances using samples taken before the first
label switching. Let θ

0 and s0 be the above estimates. Permute the labeling of the
latent classes and deduce θ

1, .., θJ !−1 and s1, .., sJ !−1.

• Step 1. For each sample of θ, do :

(1) Get l∗ which minimizes the squared-distances

||θ − θ
l||2 =

d
∑

i=1

(θi − θl
i)

2

si

,

for l = 0, ..., J ! − 1, where θi and si are the i−th coordinate of θ and s, respectively.
Allocate θ to the label given by l∗. Switch permutations l∗ and 0.

(2) Update θ
0 and s0 and derive θ

1, .., θJ !−1 and s1, .., sJ !−1 by permutation.
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